THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure.

نویسندگان

  • Chan-Shan Yang
  • Chia-Hua Chang
  • Mao-Hsiang Lin
  • Peichen Yu
  • Osamu Wada
  • Ci-Ling Pan
چکیده

Indium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model. The electrical properties of ITO GRIN structures are analyzed and fitted well with Drude-Smith model in the 0.2~2.0 THz band. Our results indicate that the ITO nanowhiskers and its bottom layer atop the substrate exhibit longer carrier scattering times than ITO thin films. This signifies that ITO nanowhiskers have an excellent crystallinity with large grain size, consistent with X-ray data. Besides, we show a strong backscattering effect and fully carrier localization in the ITO nanowhiskers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes.

Indium-tin-oxide nanowhiskers were employed as transparent electrodes in a liquid-crystal terahertz phase shifter. Transmittance of the device was as high as ∼75%. Phase shift exceeding π/2 at 1.0 THz is achieved in a ∼500  μm-thick cell. The driving voltage required for the device operating as a quarter-wave plate was as low as 17.68 V (rms), an improvement of nearly an order of magnitude over...

متن کامل

Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials.

Indium-tin-oxide (ITO) nanorods (NRs) and nanowhiskers (NWhs) were fabricated by an electron-beam glancing-angle deposition (GLAD) system. These nanomaterials are of interests as transparent conducting electrodes in various devices. Two terahertz (THz) time-domain spectrometers (TDS) with combined spectral coverage from 0.15 to 9.00 THz were used. These allow accurate determination of the optic...

متن کامل

Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces.

This work fabricates a terahertz (THz) metamaterial device, whose structure consists of split ring resonator array/ plastic substrate/ Indium Tin Oxide (ITO) film/ liquid crystals/ ITO film/ plastic substrate. Experiment results show that the resonance of the THz metamaterial device can be enhanced as voltage is applied to the liquid crystals. The enhancement will be more significant as higher ...

متن کامل

Light-Extraction Enhancement of GaInN Light-Emitting Diodes by Graded-Refractive-Index Indium Tin Oxide Anti-Reflection Contact

In photonics and optics, the refractive index of a material, first introduced by Isaac Newton as the optical density, is the most fundamental material constant. Since the refractive index determines refraction and reflection occurring at the boundary between two media, it is a critical parameter for the design of optical components, such as distributed Bragg reflectors (DBRs), omnidirectional r...

متن کامل

Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics.

As silicon photovoltaics evolve towards thin-wafer technologies, efficient optical absorption for the near-infrared wavelengths has become particularly challenging. In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near-infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 Suppl 4  شماره 

صفحات  -

تاریخ انتشار 2012